Minimal regularity solutions of semilinear generalized Tricomi equations
نویسندگان
چکیده
منابع مشابه
Regularity of Radial Extremal Solutions of Semilinear Elliptic Equations
with φ a C∞ function with compact support in Ω. Note that Qu corresponds to the second variation of the energy associated to (1). We say that u is semi-stable if Qu(φ) ≥ 0 for all such φ. If u is bounded, this is equivalent to the nonnegativeness of the first eigenvalue in Ω of the linearized problem −∆− g′(u) of (1) at u. In [CC2] we establish sharp pointwise, L, and W k,q estimates for semi-s...
متن کاملTornado Solutions for Semilinear Elliptic Equations in R: Regularity
We give conditions under which bounded solutions to semilinear elliptic equations ∆u = f(u) on domains of R are continuous despite a possible infinite singularity of f(u). The conditions do not require a minimization or variational stability property for the solutions. The results are used in a second paper to show regularity for a familiar class of equations.
متن کاملMinimal positive solutions for systems of semilinear elliptic equations
The paper is devoted to a system of semilinear PDEs containing gradient terms. Applying the approach based on Sattinger’s iteration procedure we use sub and supersolutions methods to prove the existence of positive solutions with minimal growth. These results can be applied for both sublinear and superlinear problems.
متن کاملMinimal generalized solutions of fuzzy polynomial equations
Fuzzy polynomial equations (FPEs) don’t have algebraic solutions, generally. In this paper, we first, express and prove some relationships between Husdroof meter and length function on classes of triangular fuzzy numbers. We appraise the behavior of fuzzy polynomials by using the length function properties. Next, we transform a FPE into a generalized fuzzy polynomial equation (GFPE) and introdu...
متن کاملRegularity of minimizers for three elliptic problems: minimal cones, harmonic maps, and semilinear equations
We discuss regularity issues for minimizers of three nonlinear elliptic problems. They concern minimal cones, minimizing harmonic maps into a hemisphere, and radial local minimizers of semilinear elliptic equations. We describe the strong analogies among the three regularity theories. They all use a method originated in a paper of J. Simons on the area minimizing properties of cones.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Pacific Journal of Mathematics
سال: 2018
ISSN: 0030-8730,0030-8730
DOI: 10.2140/pjm.2018.296.181